If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2=3=387
We move all terms to the left:
6x^2-(3)=0
a = 6; b = 0; c = -3;
Δ = b2-4ac
Δ = 02-4·6·(-3)
Δ = 72
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{72}=\sqrt{36*2}=\sqrt{36}*\sqrt{2}=6\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{2}}{2*6}=\frac{0-6\sqrt{2}}{12} =-\frac{6\sqrt{2}}{12} =-\frac{\sqrt{2}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{2}}{2*6}=\frac{0+6\sqrt{2}}{12} =\frac{6\sqrt{2}}{12} =\frac{\sqrt{2}}{2} $
| 0(11)=2(c+2) | | 1.2m=7.5m+2.1=63 | | 8u+17=17 | | 4(5^-x/3)=20 | | 2x^2/(1-x)(1-x)=46 | | 7x-15+3=9 | | 11(w+1)=11 | | 3/4=18/d | | 2(10^-x/5)=20 | | 7(s-10)=10(8) | | 9(m+2)=-6(m17) | | 38=2-2x | | 9y+6y-2+10-3y=0 | | -7+6r=83 | | (3/5x1/7)x1=3/5x | | 150=75+15^x | | 3g−-1=13 | | 9(m+2)=-6(m17 | | x+9/8=1/4+x-7/3 | | 14-13=-4+8x | | (-12)=3(k-2) | | 9n-31-6n=32 | | t/7-7=-5 | | 7n+6n-5=14n+4 | | 168=7-^2x7 | | 72+4y=42 | | 2n+16-5n=11 | | x-2x-15-4=0 | | 17.05=2s+4.15 | | k/8+6=(-3) | | 3*(y-15)+(y*y)=80 | | 7=2-k/2 |